

### **Best Practices in Shoulder Surgeries**

Chairperson: Ibtehal Kimawi, MD

Monday, March 27<sup>th</sup>, 2023 2:45-3:30pm



### SHOULDER PAIN EVALUATION & NON-OPERATIVE MANAGEMENT

IBTEHAL KIMAWI, MD

ASSISTANT PROFESSOR OF PM&R INTERVENTIONAL PAIN MEDICINE BOSTON UNIVERSITY SCHOOL OF MEDICINE BOSTON MEDICAL CENTER

# SHOULDER PAIN EVALUATION & NON-OPERATIVE MANAGEMENT

History

Physical exam

Conservative and Non-operative management

## HISTORY OF PRESENT ILLNESS (HPI)

- $\circ$  Hand dominance/occupation
- Location: top/AC joint, side/RC pathology, Front/biceps, Back/GH joint
- Age: >30 Female frozen shoulder, >40 impingement, >50 arthritis
- Mechanism of injury what happened immediately after the injury, prior hx shoulder pain before injury
- Aggravating and relieving factors
- Associated symptoms

### **PHYSICAL EXAM: Inspection**

- Swelling
- Scars
- Ecchymosis
- Deformity
  - o AC joint
  - Squaring of shoulder
  - biceps tendon rupture
  - pec major
    tears/rupture











### **PHYSICAL EXAM: Inspection**

- <u>Muscle atrophy</u>
  - $\circ$  Nerve damage
  - o Disuse
  - $\circ~$  Rotator cuff tear
- <u>Scapular Winging</u>
  - Medial: serratus anterior weak , long thoracic nerve injury
  - Lateral: trapezius is weak, spinal accessory nerve injury





**Scapular Winging** 



### **PHYSICAL EXAM:** Palpation

- AC Joint
- Biceps groove

Examination of the AC Joint When pulling down of the shoulder, if there is a seperation of the AC joint the clavicle will rise and a bump will be seen in the area of the joint. Acromioclavicular Compression Test





### **PHYSICAL EXAM:** Range Of Motion

- Active (AROM) what the patient can do
- Passive (PROM) what the provider can do
- <u>RANGES:</u> Flexion 180 degrees, Extension 60 deg, IR 90 deg w/arm abducted, ER 60-70 deg, Adduction 30 deg, Abduction 180 deg
- 2:1 glenohumeral to scapulothoracic motion in abduction



If active = passive and stiff  $\rightarrow$  frozen shoulder If active > passive  $\rightarrow$  rotator cuff tear





### **PHYSICAL EXAM: Strength testing**

- Manual Muscle Testing (MMT): grade 0 5
  - TRUE WEAKNESS VS. WEAKNESS DUE TO PAIN
  - Test each rotator cuff tendon/ muscle



Empty can test for supraspinatus





External rotation strength for infraspinatus and teres minor



**PHYSICAL EXAM: Special testing** 

Tests Used in Shoulder Evaluation and Significance of Positive Findings

| Test                  | Maneuver                                                                   | Diagnosis suggested by positive<br>result     |
|-----------------------|----------------------------------------------------------------------------|-----------------------------------------------|
| Apley scratch<br>test | Patient touches superior and inferior aspects of opposite scapula          | Loss of range of motion: rotator cuff problem |
| Neer's sign           | Arm in full flexion                                                        | Subacromial impingement                       |
| Hawkins' test         | Forward flexion of the shoulder to 90 degrees and internal rotation        | Supraspinatus tendon<br>impingement           |
| Drop-arm test         | Arm lowered slowly to waist                                                | Rotator cuff tear                             |
| Cross-arm test        | Forward elevation to 90 degrees and active adduction                       | Acromioclavicular joint arthritis             |
| Spurling's test       | Spine extended with head rotated to affected shoulder while axially loaded | Cervical nerve root disorder                  |
| Apprehension<br>test  | Anterior pressure on the humerus with external rotation                    | Anterior glenohumeral instability             |
| Relocation test       | Posterior force on humerus while externally rotating the arm               | Anterior glenohumeral instability             |
| Sulcus sign           | Pulling downward on elbow or wrist                                         | Inferior glenohumeral instability             |
| Yergason test         | Elbow flexed to 90 degrees with forearm pronated                           | Biceps tendon instability or tendonitis       |
| Speed's<br>maneuver   | Elbow flexed 20 to 30 degrees and forearm supinated                        | Biceps tendon instability or tendonitis       |
| "Clunk" sign          | Rotation of loaded shoulder from extension to forward flexion              | Labral disorder                               |



### **PHYSICAL EXAM: Special testing**

Bigger tears to consider MRI specially if young/traumatic:

- $\circ$  Positive Belly press/lift off testing  $\rightarrow$  subscapularis involvement
- $\circ$  ER weakness (compared to other side)  $\rightarrow$  supraspinatus/infraspinatus involvement



Bear Hug Test

**Belly Press Test** 

Lift Off Test



### **PHYSICAL EXAM**

#### DON'T FORGET NECK EXAM!

- Neck ROM
- $\circ$  Spurling test
- MMT, DTR
- Symptoms below elbow Is not from the shoulder



Workshop

SHOULDER PAIN – IMAGING

- 1- X RAYS: to start does not show soft tissue
  - Rule out acute causes (fractures, dislocations)
  - Can show arthritis GH/AC joints
  - Usually negative in RCT , may show bone spurs/calcium deposits
- 2- MRI: superior for soft tissue
  - Not needed to diagnose frozen shoulder
  - $\circ~$  Rotator cuff tears
  - $\circ$  Labral tears
  - Don't overtreat if no symptoms





### SHOULDER PAIN – IMAGING

#### 3- ULTRASOUND

- Cheap
- Provides dynamic evaluation
- No radiation risk
- Used for both diagnostic and treatment (US guided injection)
- o Difficult to assess labrum and GH ligaments





### **CONSERVATIVE MANAGEMENT**

#### NON STERPOIDAL ANTI INFLAMMATORY (NSAIDS)

#### PHYSICAL THERAPY

- Relieves pain with techniques (heat/cold/TENS)
- $\circ$   $\,$  Improves range of motion  $\,$
- Strengthens shoulder muscles
- Corrects poor posture
- o Educates and prevents injuries

#### **INJECTIONS**

- Non-image guided
- Image guided (Fluoroscopy/Ultrasound)



TENS - Can be covered by insurance





### **IMAGE GUIDED INJECTION:**

#### **FLUOROSCOPY:**

- $\circ$  Radiation risk
- Most insurances require prior authorization
- o Contrast use
- $\circ~$  Does not show soft tissues
- Good for GH and AC joints injection, PNS stimulation and implantation





### **IMAGE GUIDED INJECTION:**

#### ULTRASOUND

- o Cheap
- Provides dynamic evaluation
- $\circ$  No radiation risk
- Used for both diagnostic and treatment (US guided injection)
- o Difficult to assess labrum and GH ligaments



#### What is a BURSA?

- Synovial space reducing local attrition and facilitate tendon movement under hard surface.
- o In normal condition, bursa is collapsed barely seen on US
- In acute inflammation, bursa becomes thickened with some effusion – US finding of hypoechoic lesion
- $\circ~$  Can also be seen on MRI



### **US- GUIDED PROCEDURES:**

#### SUBACROMIAL SUBDELTOID (SASD) BURSA

**INJECTION** 

 subacromial steroid injection is effective up to 9 months and is superior to oral nonsteroidal anti-inflammatory drugs (NSAIDs)\*





#### LONG HEAD OF BICEPS TENDON INJECTION

- Small amount of fluid can be normal
- US can DDx tear/rupture/inflammation
- Can aspirate fluid if large amount •





\*Arroll B, Goodyear-Smith F. Corticosteroid injections for painful shoulder: a meta-analysis. Br J Gen Pract 2005; 55: 224-8

### **US- GUIDED PROCEDURES:**

#### INTRA-ARTICULAR (GH JOINT) INJECTION:

- o For arthritis, frozen shoulder
- Can obtain capsular distension with lidocaine and normal saline for frozen shoulder – better outcome while in PT
- Improves outcome in pain reduction and increases mobility
- Anterior vs posterior



#### ACROMION-CLAVICULAR JOINT INJECTION

- o Arthritis is the most common reason
- $\circ$  Pain with adduction
- Can be done under fluoroscopy



(a)



(b)



### **US- GUIDED PROCEDURES:**

#### CALCIFIC TENDINOPATHY

- o More in the supraspinatus tendon
- Can be seen on X-ray/MRI/US
- Cause sharp pain "like a glass."
- US finding well-circumscribed hyperechoic foci.
- o Can be asymptomatic
- Ultrasound-guided percutaneous irrigation (barbotage – lavage -Tenex)









### **US- GUIDED PROCEDURES:**

#### SUPRA-SCAPULAR NERVE BLOCK:

- Mixed nerve 70% shoulder
- Posterior and superior capsule, AC joint, shoulder ligament
- Patients with degenerative changes, postoperative pain, prior manipulation
- US use decreases the incidence of pneumothorax, nerve damage
- Superior → supra and infra
- Posterior  $\rightarrow$  infra only









(b)

23

#### 2023 Work Related Injuries Workshop

#### PRP (PLATELET RICH PLASMA)

- Inject patient's own plasma-containing platelets and associated growth factors
- Different studies not enough data
- Good for partial rotator cuff tears short term affect
- $\circ~$  (up to 1 year)
- For patients who failed conservative management or can't tolerate corticosteroid
- $\circ$  Not covered by insurance

### platelet-rich plasma





### **THANK YOU**







### Impingement Diagnosis & Treatment

Alan S. Curtis, MD Boston Sports & Shoulder Center



### Impingement

Definition



### ANATOMY OF IMPINGEMENT

### CONTAINER

- ACROMION
- C.A.LIG.
- AC JOINT

### CONTENTS

- ROT. CUFF
- BICEPS
- HUMERUS



### CONTAINER

### ACROMION

- 3 OSSIFICATION CENTERS
- OS-ACROMIALE
- AXILLARY VIEW

### ACROMION SHAPE

- OUTLET VIEW
- BIGLIANI(1986)



### **ACROMION SLOPE**





Hmm, I think I can see what the problem is Sir....

# **CAUSES OF IMPINGEMENT**

### • FUNCTIONAL

- LAXITY
- RC DYSFUNCTION
- SCAPULA PROTRACTION
- COMMON WITH POOR POSTURE AND REPETITION



# **CAUSES OF IMPINGEMENT**

### STRUCTURAL

- BONE SPURS
  - ACROMION
  - AC JOINT
  - HUMERAL HEAD
- ➤ THICK CA LIGAMENT
  - WITH DOWNSLOPE
- THICKENED RC TENDINOSISOVERHEAD REPITITION





# **CAUSES OF IMPINGEMENT**

### **POST SURGICAL**

- INADEQUATE OR UNEVEN ASD
- PROMINENT HARDWARE
- EXTENSIVE SCAR TISSUE



### TREATMENT

### STEP 1

- NSAIDS, AND PT
- JOB MODIFICATION

### STEP 2

- CORTISONE
- ? REPEAT IF SUCCESSFUL

### STEP 3, SURGERY

- EVALUATE CUFF
- DEBRIDE
- SUBACROMIAL "ADJUSTMENT"



### SURGICAL TREATMENT

- FUNCTIONAL
- REHABILITATION PROGRAM !!!
  - DEBRIDE, DON'T OVER DO
  - BURSECTOMY
  - SUBACROMIAL ADJUSTMENT
  - POST-OP REHAB
    CRITICAL





### SURGICAL TREATMENT

- STRUCTURAL
  - EVAL. ARCH AND RESTORE ANATOMY
  - REMOVE SPURS
  - DEBRIDE / REPAIR RC TEARS
- AVOID IN TRAUMATIC AND MASSIVE RC TEARS
- PRESERVE THE ARCH
- LESS IS BETTER!





2023 Work Related Injuries

Workshop

### SUBACROMIAL ADJUSTMENT

- VISUALIZE CA LIG.
- ESTABLISH LATERAL PORTAL
  - SPINAL NEEDLE
  - OPP. POSTERIOR OF
    AC JOINT
  - PARALLEL TO UNDERSURFACE OF ACROMION


# SUBACROMIAL DECOMPRESSION





# SUBACROMIAL DECOMPRESSION







# **AC IMPINGEMENT**









# **REVISION ISSUES**

- PAIN
- STIFFNESS
- CREPITUS
- INADEQUATE
   DECOMPRESSION
- OVER ZEALOUS ASD
- TOO MUCH DONE ?
  - SLAP REPAIR
  - AC RESECTION
  - BICEPS



### **SUB ACROMIAL PAIN/STIFFNESS FACTORS**

- CUFF-ACROMIAL
   SCAR FORMATION
  - EARLY BLEEDING
  - LACK OF MOTION
- IMPINGEMENT
  - ? ADEQUATE
- ? PROMINENT KNOTS OR HARDWARE
- PILLOW BRACE





### **REVISION CHALLENGE**

IMAGES 1 VIDEOS 0 ARTHROSCOPY

0

-Ver

3000 R P M PORTA



0

<u>\*</u>



### **REVISION CHALLENGE**



# WORK CAPACITY

- SHOULDER SCOPE
  - CUFF INTACT
- WEEKS 3-6
  - LIGHT USE
  - AVOID REPETITION
- WEEKS 6-12
  - 10 LBS, NO OVERHEAD
- WEEKS 12-16
  - 50 LBS, LIGHT OVERHEAD
    PROGRESS TO FULL DUTY



## **EDUCATION IS EVERYTHING !!!**

# Save The Deltoid!





# Demographics

- Rotator cuff tears are a common source of shoulder pain and decreased motion
- Prevalence of rotator cuff disease increases with age
- Tears can be present in both <u>symptomatic and asymptomatic individuals</u>
- Possible reasons for the development of <u>symptoms</u> include:
  - Trauma
  - Increase in tear size
  - Conversion of partial tear to full thickness tear
  - Development of fatty infiltration or atrophy
  - New biceps pathology



Anterior view

- Prevalence Ranges
- 50's 13%
- 80's 50%
- The societal burden of rotator cuff disease can be substantial
- A rotator cuff repair procedure could result in a cost savings of up to \$78,000



# **Anatomy and Function**

- Area of insertion of greater tuberosity is sizeable
- Supraspinatus footprint is smaller than the infraspinatus
- Medial to lateral distance is on average <u>14.7 mm</u> (Dugas et al.)
- Subscapularis footprint is largest/trapezoidal in shape with medial to lateral width of 17.9 mm on lesser tuberosity





Subscapularis insertion

2.45 cm

# Diagnosis

- 1. History (trauma, chronicity, characteristics of pain)
- 2. Physical exam (ROM and strength) Provocative tests isolating each muscle tendon unit





# Imaging: Xray

Looking for:

- Acromiohumeral distance
- Calcific tendonitis
- Acromion type/presence of os acromiale
- Other potential pain generators
  - Arthritis







# Imaging: MRI

- Diagnostic standard to evaluate rotator cuff pathology
- Tear characteristics: size, shape, amount of tendon retraction
- Fatty infiltration and atrophy on T1 sagittal
- Medial subluxation of biceps tendon → subscapularis pathology
- Other potential pain generators





# Ellman Classification for Partial Rotator Cuff Tears

- Grade 1 <25%
- Grade 2- 25-50%
- Grade 3- >50%



Ellman classifications for (A) grade 1 (<25%), (B) grade 2 (25%-50%), and (C) grade 3 (>50%) partial-thickness tears.

# Full Tear Classification: Tear Size

| Small   | <1cm  |
|---------|-------|
| Medium  | 1-3cm |
| Large   | 3-5cm |
| Massive | 5cm+  |

# **Classification: Tear Shape**

| Fable 3                                                             |                   |                               |                                |                                  |                   |  |  |
|---------------------------------------------------------------------|-------------------|-------------------------------|--------------------------------|----------------------------------|-------------------|--|--|
| Classification of Posterosuperior Cuff Tear Patterns <sup>3,4</sup> |                   |                               |                                |                                  |                   |  |  |
| Tear Pattern                                                        | AP Length<br>(cm) | Medial-lateral<br>Length (cm) | Inherent<br>Mobility           | Repair Technique                 | Prognosis         |  |  |
| Crescent                                                            | <2                | <2                            | Excellent (medial-<br>lateral) | Repair directly to bone          | Good to excellent |  |  |
| U- or L-shaped                                                      | <2                | >2                            | Excellent (AP)                 | Margin convergence               | Good to excellent |  |  |
| Massive, contracted,<br>immobile                                    | >2                | >2                            | Minimal                        | Interval slide/partial<br>repair | Fair to good      |  |  |
| Cuff arthropathy                                                    | NA                | NA                            | NA                             | Reverse arthroplasty             | Fair to good      |  |  |

AP = anterior-posterior, NA = not available

Millett and Warth JAAOS 2014 from Burkhardt study published in Arthroscopy 2010

# **Classification: Tear Shape**



Millett and Warth JAAOS 2014 from Burkhardt study Arthroscopy 2010

### **3D Tear Shape**

- Tension free repair to anatomic footprint
   → restore normal force couples
- Techniques like margin convergence and interval slide to cover humeral head



Figure 8. U-shaped rotator cuff tear. A superior view of a U-shaped rotator cuff tear involving the suprespinatus (SS) and infraspinatus (S) tendons; B, U-shaped tears demonstrate excellent mobility from an anterior-to-posterior direction and are initially repaired with side-to-side sutures using the principle of margin convergence; C, the repaired margin is then repaired to bone in a templon-tee manner.



Figure 9. Acute L-shaped rotator cuff tear. A, superior view of an acute L-shaped rotator cuff tear involving the supraspinatus tendon (SS) and rotator interval (RI); B, the tears should be initially repaired along the longitudinal split; C, the converged margin is then repaired to bone. IS, infraspinatus; Sub, subscapularis tendon; CHL, coracohumeral ligament.

# Classification: Cuff Atrophy (Goutallier)

| Grade   | Amount of Fat in Muscle                            |  |  |
|---------|----------------------------------------------------|--|--|
| Grade 0 | Normal muscle                                      |  |  |
| Grade 1 | Muscle contains some fatty streaks                 |  |  |
| Grade 2 | Fatty infiltration, but still more muscle than fat |  |  |
| Grade 3 | Equal amounts of fat and muscle                    |  |  |
| Grade 4 | More fat than muscle is present                    |  |  |

Classification system of fatty muscle atrophy as developed by Goutallier et al [14].

# Classification: Cuff Atrophy (Goutallier)



# Natural History- Tear Progression Keener, JAAOS 2019

#### Partial RC tears

- 2 year- 11%
- 5 year- 35%

#### Full thickness RC tears

- 2 year- 22%
- 5 year- 50%
- Tear Severity and Hand Dominance were greater risks tear progression





Goals of Treatment

- Reduce pain
- Increase strength and Range of Motion
- Restore normal force couples
- Biologic healing of tendon to bone
- Nonoperative Management with Physical Therapy
  - Low/mid grade partial tears
  - Chronic tears with atrophy
  - Medically ill
  - Unable to comply with post op restrictions and therapy



#### Treatment of Nontraumatic Rotator Cuff Tears

#### A Randomized Controlled Trial with Two Years of Clinical and Imaging Follow-up

Juha Kukkonen, MD, PhD, Antti Joukainen, MD, PhD, Janne Lehtinen, MD, PhD, Kimmo T. Mattila, MD, PhD, Esa K.J. Tuominen, MD, PhD, Tommi Kauko, MSc, and Ville Äärimaa, MD, PhD

Investigation performed at the Department of Orthopaedics and Traumatology, Turku University Hospital, Turku, Finland; the Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland; and the Department of Orthopaedics and Traumatology, Hatanpää Hospital, Tampere, Finland

- Purpose: Compare the effectiveness of physiotherapy, acromioplasty, and rotator cuff repair for this condition
- Methods: 180 symptomatic, non-traumatic supra tears randomized into three groups: physiotherapy, acromioplasty and physiotherapy, RCR, acromioplasty, and physiotherapy. ASES, VAS, satisfaction, RCR integrity, cost
- Results: 160 patients. No significant difference in Constant scores amongst groups
  - No significant differences in VAS, and patient satisfaction,
  - RCR more expensive

<u>Conclusion: Conservative treatment reasonable option for primary</u> <u>initial treatment of isolated, symptomatic, nontraumatic, ss tears in</u> <u>older patients.</u>

Small tears, non-op group progressed in size

# **Indications for Surgical Repair:**

- Indications
  - Traumatic tears
  - Chronic or Partial tears that do not improve with PT
  - High demand work
  - Very high grade partial tears
    - *≫*75-80%



# **Tendon Healing:**

- Repaired tendon initially forms fibrovascular scar with abundant type III collagen → weaker than type I collagen
- Repairs are more prone to failure than native tendon-bone insertion (Bedi et al)



### **Ideal Repair for Effective Tendon to Bone Healing:**

- Restoration of footprint contact area
- Appropriate compression of the tendon on the footprint
- Minimal motion at bone-tendon interface (Ranalletta et al)





#### 2023 Work Related Injuries

# **Arthroscopic Approach**

#### Advantages

- Deltoid muscle sparing
- Less scar tissue
- Better visualization of tear patterns
- Can see biceps/labral pathology which can be pain generators







### **Full Tear Video**



# **Single Row Technique**

- Single row repair:
- Fewer anchors  $\rightarrow$  lower cost
- Anchors placed off the articular margin
- Does not fully re-produce the tendon insertion site (46 to 71% according to Meier et al.)
- Less pressurized contact area



# **Double Row Technique**

- Wider footprint contact area
- Superior resistance to gap formation
- Improved time zero strength and stiffness compared to single row construct
- Questionable improvement in clinical outcomes compared to single row repairs, but lower retear rates (Millett et al.)



#### Single-Row or Double-Row Fixation Technique for Full-Thickness Rotator Cuff Tears: A Meta-Analysis

Qiang Zhang<sup>1,2</sup><sup>9</sup>, Heng'an Ge<sup>1,2</sup><sup>9</sup>, Jiaojiao Zhou<sup>1,2</sup>, Chaoqun Yuan<sup>1,2</sup>, Kai Chen<sup>1,2</sup>, Biao Cheng<sup>1</sup>\*

1 Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China, 2 First Clinical Medical College, Nanjing Medical University, Nanjing, China

- Meta-analysis of level I and II studies
- Did subgroup analysis based on tear size
- No difference in clinical outcomes between SR and DR when tear size less than 3 cm
- ASES and UCLA scores markedly lower in SR repairs with tear size greater than 3 cm
- More partial thickness re-tears in SR repairs (full thickness re-tears no difference) again for tear size greater than 3 cm



# How do I decide which technique?

- Tear Pattern
- Mobility
- Bone quality
- Size of the tear



Interpreter Tendon Louis (Interpreter Tendon Louis (Interpreter Tendon)

# Rehabilitation

- Sling 4-6 weeks and physical therapy
  - Desk work only
  - Can use hand and wrist only
- 6 weeks begin active assist
  - Still light duty no lifting
- 8-10 weeks active motion
  - May lift very light 2-5 pounds no overheaed
  - 4-6 month recovery
- Improvements up to 1 year
  - May need to consider work conditioning at the end of PT




# **Things to Consider**

- There are many variables at play when it comes to optimizing chances for successful healing (patient factors, tissue quality, tear characteristics)
- There is no one right answer. Must be flexible and know options available
- Goal should be to provide tension free mechanical stability. Attempt to restore native anatomy when possible
- Be mindful of ways to augment repair if warranted



### **THANK YOU**





## Surgical Options Following Failed Rotator Cuff Repair

Peter S. Vezeridis, MD Orthopaedic Surgeon Excel Orthopaedic Specialists Woburn, MA

Lissa & D

### Introduction

### Failed Rotator Cuff Repair

- Challenging problem
- Younger, active patient population
- High failure rates after repair of massive, retracted RCTs
- Multiple surgical treatment options
  - Advantages
  - Disadvantages
- No single treatment has been demonstrated to be an optimal solution



### **Patient Factors**

- Age
- Activity level
- Profession
- Extent of disability
- Medical co-morbidities
- Degree of joint arthropathy





### Presentation

Highly Variable

- Pain
- Weakness
- Motion loss
  - Active
  - Passive
- Patients may complain of one or more of these symptoms
  - Which symptom(s) are most limiting to the patient
  - What are the patient's needs, goals



### **Treatment Options**

- Debridement / Partial Repair / Augmentation
- Superior Capsular Reconstruction
- Subacromial Balloon Spacer
- Tendon Transfer
- Reverse Shoulder Arthroplasty



# **Debridement / Partial Repair / Augmentation**

- Low risk
- Good outcomes are possible
- Unpredictable
- Does not restore full strength



### **Partial Repair**

### Partial Repair of Irreparable Rotator Cuff Tears

Stephen S. Burkhart, M.D., Wesley M. Nottage, M.D., Darrell J. Ogilvie-Harris, M.D., Harvey S. Kohn, M.D., and Anthony Pachelli, M.D.

- 14 pts
- Forward elevation: 59.6°  $\rightarrow$  150.4°
- Strength improved ave 2.3 grades
- UCLA: 9.8 → 27.6
- 13/14 "very satisfied"

Arthroscopy 1994

### **Partial Repair**

Arthroscopic Partial Repair of Irreparable Rotator Cuff Tears: Factors Related to Greater Degree of Clinical Improvement at 2 Years of Follow-Up

Kun-Hui Chen, M.D., En-Rung Chiang, M.D., Ph.D., Hsin-Yi Wang, M.D., and Hsiao-Li Ma, M.D.

- 37 pts, mean f/u 29.6 mo
- VAS: 5.22 → 1.51, ASES: 46.0 → 78.6
- Incidence of night pain: 70.3%  $\rightarrow$  8.1
- 41.6% rate of repair failure at mean 6.4 mo f/u
- Conclusion: Arthroscopic partial repair of irreparable RCTs is an effective treatment to improve the shoulder function and decrease the pain, despite the high repair failure rate. Pts with lower preop functional score, higher VAS score, or night pain experienced a greater degree of functional improvement.

evel of Evidence: Level IV, therapeutic case series

**Work Related Injuries** 

Workshop

# **Partial Repair**

- 31 patients at final follow-up (>2 years postoperatively)
- Outcomes deteriorated over time
- 48% dissatisfied
- Only preop affecting final patient-rated satisfaction was teres minor fatty infiltration
- Arthroscopic partial repair may produce initial improvement, but half of patients were dissatisfied at final f/u.

Shon AJSM 2015



## **Partial Repair**

- Can be effective
- Results may deteriorate with time
- Reserve for older, lower demand patients

## **Superior Capsular Reconstruction**

- Mihata 2012
- Reconstruct the superior GHJ capsule
- Prevent superior migration of the humerus
- Fascia lata autograft
  - Superior glenoid medially
  - Greater tuberosity laterally
- Suture any residual RC to the graft
- Optimize the force couples for arm elevation
- Acellular dermal allograft





### **Superior Capsular Reconstruction**

- Advantages
  - Arthroscopic procedure
  - Limited/no donor site morbidity
- Disadvantages
  - Static
  - Does not improve RC muscle strength

# Superior Capsular Reconstruction

- Described by Mihata in 2013 thick fascia lata autograft anchored to medial glenoid and lateral cuff footprint
- Side-to-side repair to infraspinatus and subscapularis
- Initial results were excellent with improvements in elevation and a 16.7% re-tear rate



# Superior Capsular Reconstruction

- Advantages
  - Arthroscopic procedure
  - No donor site morbidity
- Disadvantages
  - Static
  - Does not improve RC muscle strength

# Superior Capsular Reconstruction

- Reconstruct the superior GHJ capsule
- Prevent superior migration of the humerus
- Fascia lata autograft
  - Superior glenoid medially
  - Greater tuberosity laterally
- Suture any residual RC to the graft
- Optimize the force couples for arm elevation
- Biomechanically, superior humeral translation was restored fully after SCR

#### Superior Capsule Reconstruction to Restore Superior Stability in Irreparable Rotator Cuff Tears

A Biomechanical Cadaveric Study

Teruhisa Mihata,<sup>\*†‡§</sup> MD, PhD, Michelle H. McGarry,<sup>†‡</sup> MS, Joseph M. Pirolo,<sup>†‡</sup> MD, Mitsuo Kinoshita,<sup>§</sup> MD, PhD, and Thay Q. Lee,<sup>†‡</sup> PhD

AJSM 2012

# Superior Capsular Reconstruction

Initial Results

- Excellent initial clinical results
- 24 shoulders (23 patients), 34.1-month follow-up (24 to 51 months)
- Active elevation: 84° to 148°
- ER: 26° to 40°
- AHI: 4.6 mm to 8.7 mm
- ASES score: 23.5 to 92.9
- 83.3% intact graft

Clinical Results of Arthroscopic Superior Capsule Reconstruction for Irreparable Rotator Cuff Tears

Teruhisa Mihata, M.D., Ph.D., Thay Q. Lee, Ph.D., Chisato Watanabe, M.D., Ph.D., Kunimoto Fukunishi, M.D., Mutsumi Ohue, M.D., Tomoyuki Tsujimura, M.D., and Mitsuo Kinoshita, M.D., Ph.D.

Arthroscopy 2013



# Superior Capsular Reconstruction

### Initial Results

- 59 patients, ave 62 y/o, min 1 year follow-up
- ASES score 43.6 → 77.5
- VAS 5.8 → 1.7
- SSV 35.0 → 76.3
- FF 130° → 158°, ER 36 → 45, IR L3 → L1
- AHD 6.6 mm  $\rightarrow$  7.6 mm at 2 weeks postop but was not maintained at >1-year follow-up,
- Postop MRI revealed only 45% graft healing rate at final follow-up
  - Healing correlated with better outcomes
- Significantly greater prevalence of preop subscapularis atrophy in the nonhealed group
- 74.6% "success"

### Preliminary Results of Arthroscopic Superior Capsule Reconstruction with Dermal Allograft

Patrick J. Denard, M.D., Paul C. Brady, M.D., Christopher R. Adams, M.D., John M. Tokish, M.D., and Stephen S. Burkhart, M.D.

Arthroscopy 2018

# Superior Capsular Reconstruction

- 54 patients, minimum 1-year f/u, mean 24 mo
- 20.4% clinical failure
- Higher failure rate: female sex, subscapularis tear
- Trend towards higher failure: elevated BMI, lower preop FF, lower preop AHI

Arthroscopy 2021

#### Patient Factors Associated With Clinical Failure Following Arthroscopic Superior Capsular Reconstruction

Ron Gilat, M.D., Eric D. Haunschild, B.S., Brady T. Williams, M.D., Michael C. Fu, M.D., Grant E. Garrigues, M.D., Anthony A. Romeo, M.D., Nikhil N. Verma, M.D., and Brian J. Cole, M.D., M.B.A.



## Superior Capsular Reconstruction

- 35 shoulders
- Improvements in all outcomes scores
- 62% graft failure by MRI
- Graft healing did not effect outcome scores
- Clinical improvement may be secondary to partial repair, debridement, biceps management

JSES 2021

Evaluating the role of graft integrity on outcomes: clinical and imaging results following superior capsular reconstruction

Mark W. LaBelle, MD<sup>a,b</sup>, Sunita Mengers, MD<sup>a,b</sup>,\*, John Strony, MD<sup>a,b</sup>, Matthew Peck, MD<sup>c</sup>, Robert Flannery, MD<sup>a,b</sup>, Sean Cupp, MD<sup>a,b</sup>, Michael J. Salata, MD<sup>a,b</sup>, Eric M. Parsons, MD<sup>d</sup>, Robert J. Gillespie, MD<sup>a,b</sup>



### **Subacromial Balloon Spacer**

- Humeral head depressor
- Optimal indication: isolated, irreparable SS tear with superior migration and intact force couples
- CA arch should be intact
- Short procedure, low-risk
- Absorbs over 12 months, ? longevity



## Lower Trapezius Tendon Transfer

- LT = ideal transfer option
  - Origin is cranial to the latissimus dorsi and medial to the infraspinatus fossa of the scapula
  - Nearly identical line of pull as the infraspinatus
  - Excursion and tension forces very similar to infraspinatus
  - EMG study showed synergistic ER activation (in-phase)



## Lower Trapezius Tendon Transfer

- More anatomic tendon transfer option
- Arthroscopically-assisted technique
- Good short-term results
- Promising treatment option for younger patients with massive irreparable PS rotator cuff tears



### Results

- 33 patients with massive irreparable PS tears
  - Final follow-up of almost 4 years
  - 97% of patients with significant improvement in pain, SSV, and DASH score
    - SSV: 54% to 78%
    - DASH: 52 to 18
  - Mean ROM improvements
    - Forward flexion 50°
    - Abduction 50°
    - ER 30°
  - More significant ROM gains in patients with > 60° of preoperative flexion

Elhassan BT et al. Outcome of lower trapezius transfer to reconstruct massive irreparable posterior-superior rotator cuff tear. J Shoulder Elb Surg. 2016;25(8):1346–53.

### Results

- 14 patients (8 men, 6 women; mean age of 62 years, range: 50-70)
- Mean 24 months f/u
- ER gain
  - 24° with arm at side
  - 40° in 90° of abduction
- Constant-Murley score: 35 to 60 points
- SST: 3.5 to 7.5
- SSV: 30 to 60%
- VAS pain: 7 to 2
- Resolution of lag sign and hornblower sign
- Complications: 2 hematomas, 1 revision for infection

Valenti P, Werthel JD. Lower trapezius transfer with semitendinosus tendon augmentation: Indication, technique, results. Obere Extrem. 2018;13(4):261-268.

# **Reverse Shoulder Arthroplasty**

- Typically restores a good amount of shoulder function
- Excellent pain relief
- Overall rapid recovery
- Irreversible step
- High early failure rate in younger patients



### **Thank You!**



Add a footer