
### **Management of ACL Injuries**







#### Xinning Li, M.D

Assistant Professor Sports Medicine and Shoulder Surgery Boston University School of Medicine – Boston Medical Center Team Physician – Boston University Athletics

### Disclosures

#### <u>Consultant</u>

- Tornier Arthroplasty
- DePuy Mitek Sports Medicine

#### <u>Scientific and Product Advisory Board</u>

• DePuy Mitek Sports Medicine

#### Editorial Board Member

- Journal of Bone and Joint Surgery (JBJS) Sports Medicine Section
- Orthopedic Reviews
- World Journal of Orthopaedic
- Journal of Medical Insight (JOMI) Equity

#### • <u>Reviewer Panel</u>

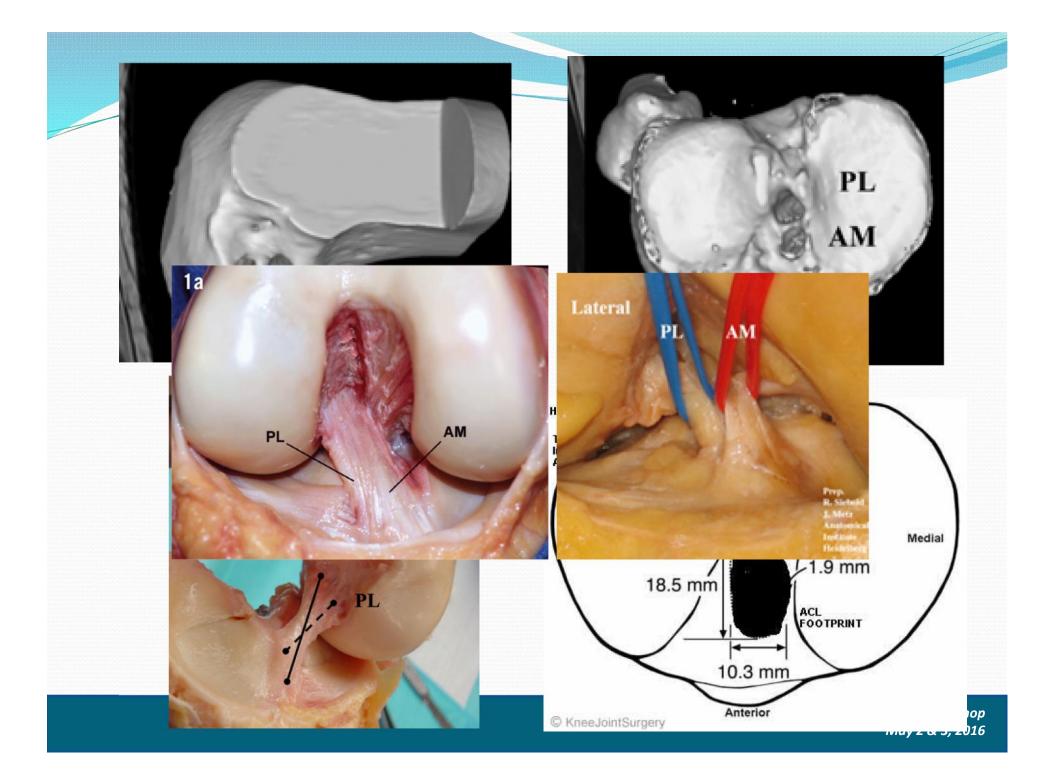
- American Journal of Sports Medicine (AJSM)
- Journal of Shoulder and Elbow Surgery (JSES)
- Orthopedics
- Journal of Orthopaedic Research (JOR)
- Orthopedic Reviews
- KSSTA



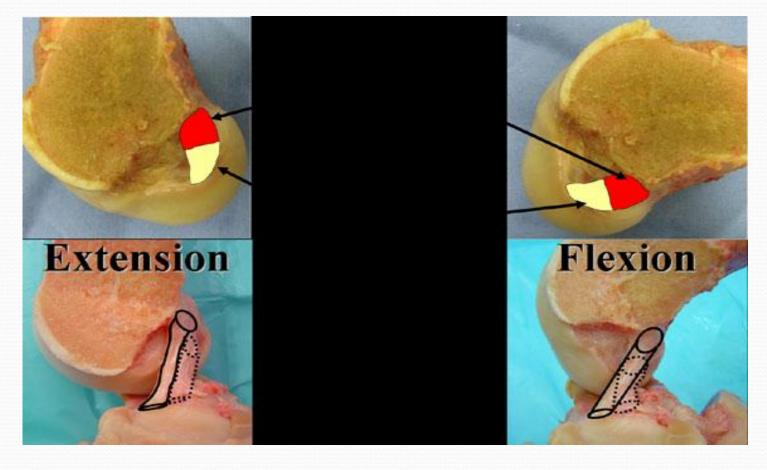
MITEK SPORTS MEDICINE

- Research Funding
  - OREF

<u>Equity</u>
JOMI

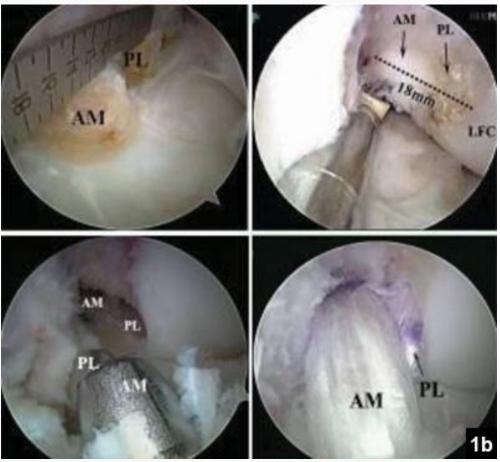

### Basics of ACL Reconstruction

- Most studied Ligament
- Required for running, cutting, and kicking
- Proprioception and viscoelasticity
- 2 bundles and multi-axial function


- Incidence of Injury
  - 1 / 3,500 ppl / yr (managed care) =  $\sim$ 80,000 to 100,000
- 50,000 80,000 ACL done / yr x \$17,000 = ~ \$ 850,000,000 to > \$
   1 Billion
  - Does not take in Lost time work, rehab, conservative mang, etc.

### ACL Anatomy

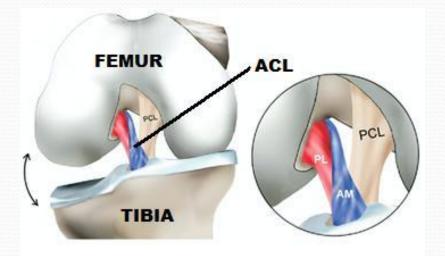
- 30-40 mm long and 11mm wide
- Middle Genicular Artery (popliteal A.)
  Inf and lateral genicular A -> via fat pads
- Both nerve and mechanoreceptors
- Divided to Antero-Medial and Postero-Lateral Bands
  - Continuation of fibers, but different portions are taut are different ROM.
  - Allow ACL to function in all ROM




### Flexion vs. Extension



# **AM Bundle - Biomechanics**


 AM fibers resist <u>anterior</u> tibial translation in the knee at 90° flexion



Zantop et al. Am J Sports Med, 2007

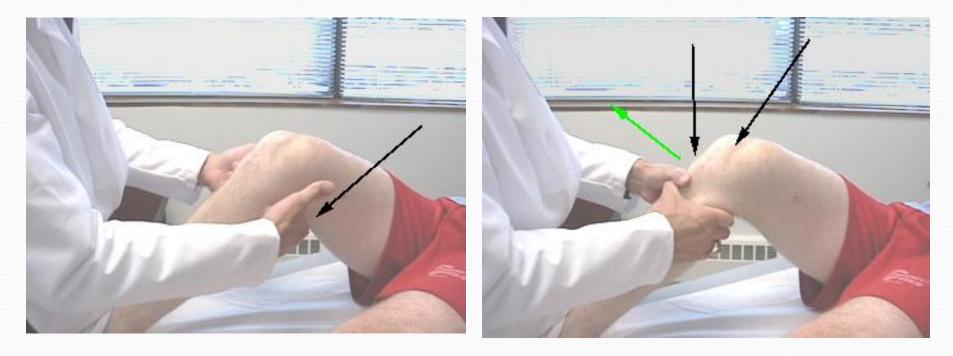
## **Biomechanics**

### PL fibers control <u>rotational stability</u> of the knee, such as in pivoting, twisting, running, and jumping [9,10]



Zantop et al. Am J Sports Med, 2007.

### Biomechanics / Function Limit anterior tibia displacement

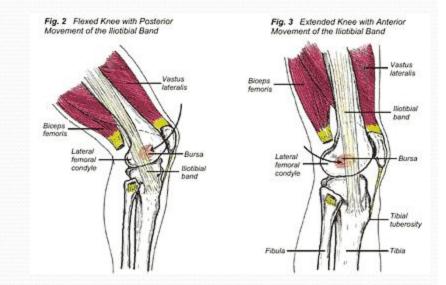

- Minor 2<sup>nd</sup> restraint to varus-valgus at Full Ext
- Great ant. displacement @ 30 flexion
- Rupture ACL = Abn. Ant translation and rotation (tibia)
- Ultimate Tensile properties ACL: 1,725 +/- 269 N
  - Extension: ~ 100 N
  - Walking: ~400 N
  - Cutting / pivoting: ~ 1,700 N

# Clinical Sign / Symptoms <u>Non-contact injury</u> while changing direction or landing

- Twist of knee with "pop", acute hemarthosis, unable to bear weight.
- Locking, catching, or clicking of knee (ROM)
  - ? Meniscal tear +/- displaced bucket handle
  - Loose body

### Anterior Drawer

- 90 deg of flexion with anterior force (Tibia)
- Not as sensitive or specific as the Lachman






- Knee 20-30 deg flexion -> stabilize femur, anterior force on prox tibia.
- Est displacement (mm) and firmness of end point (firm, marginal, or soft)
- Grade 1 (0 to 5 mm)
- Grade 2 (5 to 10 mm)
- Grade 3 (> 10mm)



- Very early flexion: Anterior subluxation of tibia
- Flexion 20-40 deg: Posterior pull of IT reduce tibia
- The relocation event is graded
  - 0: absent
  - 1: pivot glide
  - 2: pivot shift (abrupt reduction)
  - 3: momentary locking



# Intra-Operative Exam



### ACL and PCL Fxam





May 2 & 3, 2016

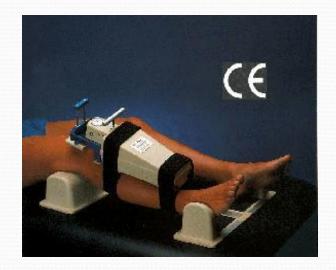
# Exam the Other Side



# Plain radiograph

- Rule out fx
- Segond fx: avulsion fx of lateral joint capsule

#### MR Imaging

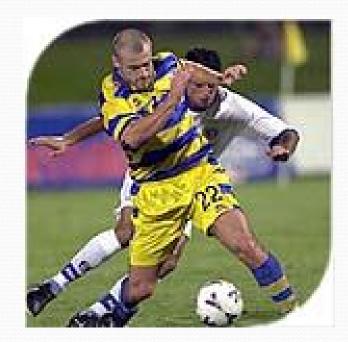

- Accuracy to detect ACL tear  $\sim 95\%$
- Smooth well defined structure (Sagital)
- Acute injury
  - T2: edema within ACL substance
  - Bone Bruising (~60%)
- Acute kinking or ant bending of PCL
  -> ? ACL tear





### Other Testing

- KT-1000
  - Measure A to P displacement
  - Difference of > 3mm is abnormal
  - Used in research
- Exam under Anesthesia
  - Better when pt is relaxed



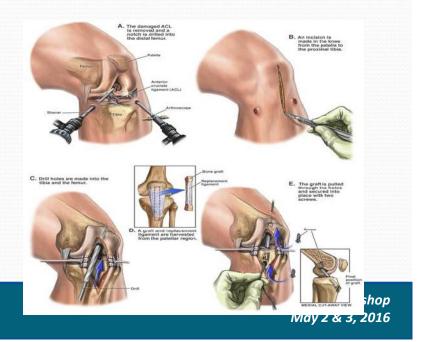

### • Toperative vs Non Operative based of many variables

- Other associated lesions
- Age and level of activity
- Degree of instability
- Type of sports activity
  - Jumping, cutting, pivoting

### **Primary Candidates**

- Active lifestyle w/ acute ACL tears
- Chronic ACL w/ instability
- Two factors predictive of surgery
  - 1) Number of hours / yr in Level I or II sports (50)
  - 2) Max displacement difference (5MM 7mm)




### Non Operative Treatment

- Bracing, WBAT, Crutches, and early AROM
- PT with Closed Chain exercises
  - Goal return function of Hamstring and Quad
- Obtain Full ROM
- Modification of high risk activities
- Functional Bracing for sports



### Marstigitatechanagement

- Transtibial vs. AnteroMedial Drilling
- 2 Incision Technique
- Many different types of graft choices
- Goal
  - Biology
  - Position / Orientation
  - Fixation
  - Patient Selection



### Graufgran Selection

- Histology and biomechanical characteristics
- Fast incorporation
- No risk (Immune vs diesease)
- Min donor site morbidity
- Match size and length native ACL
- Inexpensive and available



# Autograft vs Allo - Grafts

- 4 strand hamstring (4HS)
- Bone-patellar tendon-bone (BPTB)
- Quad tendon
- Allograft
  - BPTB
  - Achiles
  - Tib anterior or posterior
  - Hamstring

#### Table 1

Advantages of Autograft and Allograft

#### Autograft

Higher normal stability rate and lower graft failure rate1 Lower infection rate<sup>2</sup> No risk of disease transmission No risk of immune reaction<sup>3</sup> Lower cost<sup>4</sup> Faster graft incorporation/faster return to full activities5 Allograft Faster immediate postoperative recovery Less postoperative pain Graft harvest not part of surgery No donor site morbidity Larger grafts available for double-bundle reconstruction Improved cosmesis

|       | 99 |
|-------|----|
|       |    |
| 10000 |    |
|       |    |
|       |    |

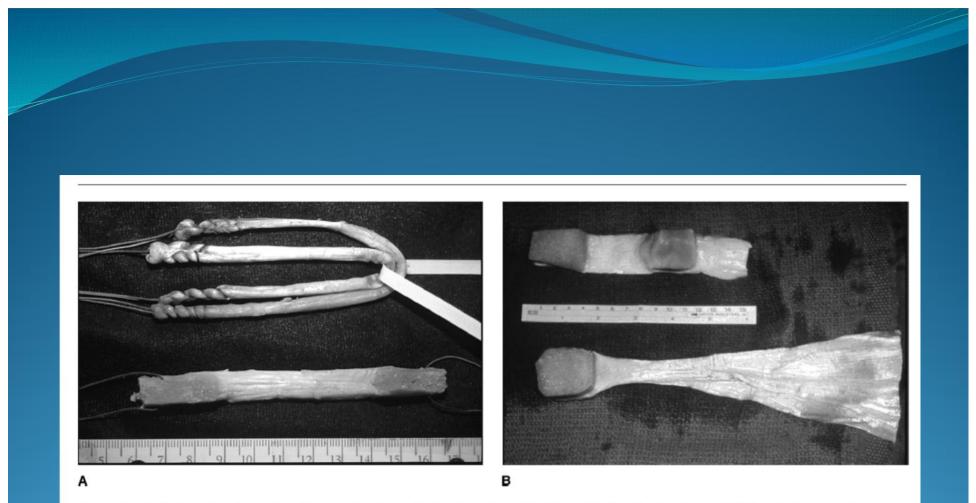
#### Table 2 Biomechanical Properties of Selected ACL Graft Tissues

| Tissue                                         | Ultimate<br>Tensile<br>Load (N) | Stiffness<br>(N/mm) | Cross-sectional<br>Area (mm²) |
|------------------------------------------------|---------------------------------|---------------------|-------------------------------|
| Intact anterior cruciate ligament <sup>3</sup> | 2,160                           | 242                 | 44                            |
| Bone-patellar tendon-bone (10 mm) <sup>6</sup> | 2,977                           | 620                 | 35                            |
| Quadruple hamstring <sup>5</sup>               | 4,090                           | 776                 | 53                            |
| Quadriceps tendon (10 mm) <sup>7,8</sup>       | 2,352                           | 463                 | 62                            |

### Table 1Comparison of Anterior Cruciate Ligament Graft Types

|                                                       | <b>Biomechanical</b> Property              |                                            |                                                            |                       |                                            |                                         |
|-------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------------------|-----------------------|--------------------------------------------|-----------------------------------------|
| Graft                                                 | Tensile<br>load (N)                        | Stiffness<br>(N/mm)                        | Biologic<br>Incorporation                                  | Method of<br>Fixation | Graft Site<br>Morbidity                    | Outcomes/<br>Return to<br>Play (months) |
| Patellar tendon<br>autograft <sup>3,4</sup>           | 2,977                                      | 620                                        | Bone-to-bone<br>healing (6 wks)                            | Interference<br>screw | Anterior knee<br>pain; larger<br>incision  | 4-6                                     |
| Quadruple<br>semitendinosus/<br>gracilis <sup>5</sup> | 4,090                                      | 776                                        | Soft-tissue healing<br>(8-12 wks)                          | Variable              | Hamstring<br>weakness                      | Increased<br>laxity/6                   |
| Patellar tendon<br>allograft <sup>6</sup>             | Similar to<br>patellar tendor<br>autograft | Similar to<br>patellar tendon<br>autograft | Bone-to-bone<br>healing, slow<br>incorporation<br>(>6 mos) | Interference<br>screw | None                                       | >6                                      |
| Quadriceps<br>tendon <sup>7,8</sup>                   | 2,352                                      | 463                                        | Bone-to-bone<br>and soft-tissue<br>(6-12 wks)              | Variable              | Similar to<br>patellar tendon<br>autograft | Limited data                            |

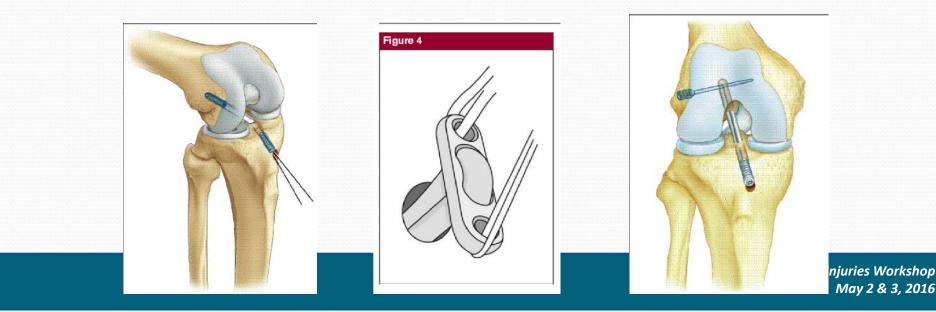
#### Donor site Morbidity


- Minimal w/ Autografts
- Hamstring: mild knee flexion weakness
- BPTB: Anterior Knee Pain (17% vs 11%)

### Disease Transmission

• Allograft: Very low. 1 death from Kreutzfekdt disease, higher infection rate w/ non irradiated allograft

#### • Cost


- Allograft: \$2,000 to \$3,000
- Double bundle ACL graft: \$4,000 to \$6,000.





### Graft Fixation Techniques

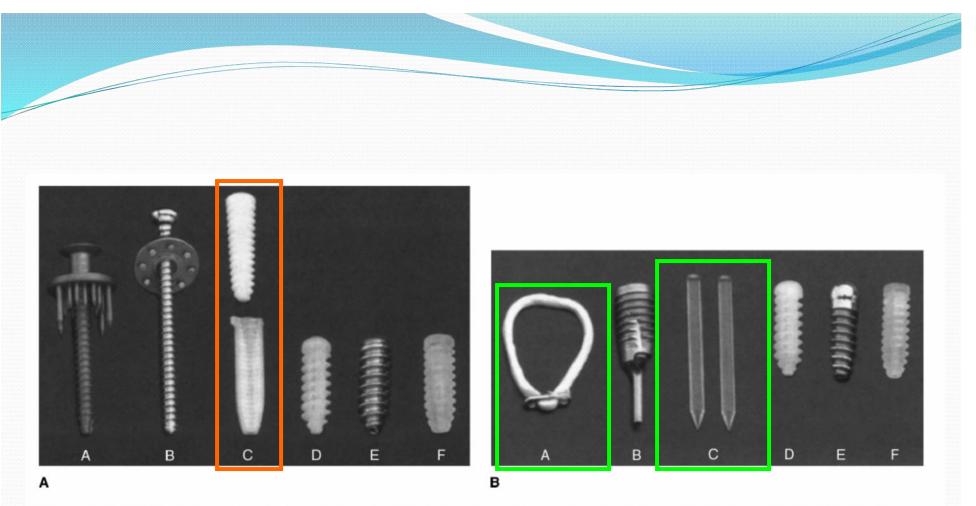
- Interference screw fixation RCI screw, Softsilk, Bioscrew, Milagro
- **Cortical fixation** Endobutton, WasherLoc/EZloc, Sutures over button
- Suspensory fixation in the aperture- Crosspin, Rigidfix



## Biology of Healing

- Inflammatory phase (degeneration of graft, cell death)
- Revascularization (migration of host cells)
  - 3-6 months
  - Graft weakest @ 6 to 12 weeks

### • Remodeling of graft


• Mechanical properties improve (always less @ time of implant)

### • BPTB graft

- Faster healing (6 weeks) and stronger vs Hamstring (8-12 wks)
- Sheep model: robust biological response, increased stability, and increased strength to failure vs allograft.

### Fixation

| EndoButton (Smith & Nephew Endoscopy,<br>Andover, MA) <sup>24</sup> |                                                                     | 1,086                                                 | 79                     |          |
|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|------------------------|----------|
| RigidFix (Ethicon, Somerville, NJ                                   | ) <sup>24</sup>                                                     | 868                                                   | 77                     | 5 D      |
| rehab: ~400-500 N                                                   | Bioabsorbable interfere                                             |                                                       | 552                    | _        |
| Failure typically on tibial                                         | Soft Tissue (Femoral)<br>Bone Mulch Screw (Ai                       | moral)<br>Screw (Arthrotek, Warsaw, IN) <sup>24</sup> |                        | 115      |
| side                                                                | EndoButton (Smith & Nephew Endoscopy,<br>Andover, MA) <sup>24</sup> |                                                       | 1,086                  | 79       |
|                                                                     | RigidFix (Ethicon, Son                                              | nerville, NJ) <sup>24</sup>                           | 868                    | 77       |
| Rigid Fix BioScrew (Linvatec) <sup>24</sup>                         |                                                                     | vatec, Largo, PL)                                     | 79 <del>4</del><br>589 | 90<br>66 |
| • >30 deg divergence =                                              | RCI Screw (Smith & N                                                | 546                                                   | 68                     |          |
| greater failure                                                     | Intrafix (Ethicon) <sup>25</sup>                                    |                                                       | 1,332                  | 223      |
| Tibial side: Intrafix is                                            | wasnerLoc (Arthrotek)<br>Tandem spiked washe                        | 975<br>769                                            | 87<br>69               |          |
| Tiblai Side. Initianx 15                                            | SmartScrew ACL <sup>25</sup>                                        |                                                       | 665                    | 115      |
| Intrafix (Ethicon) <sup>25</sup>                                    |                                                                     | 1,332                                                 |                        | 223      |



**Figure 2 A**, Tibial side hamstring fixation devices. A = WasherLoc, B = spiked washer, C = Intrafix, D = BioScrew, E = SoftSilk, F = Smart-Screw. **B**, Femoral side hamstring fixation devices. A = EndoButton, B = Bone Mulch Screw, C = RigidFix, D = Bioscrew, E = RCI Screw, F = SmartScrew. (Panel A reproduced with permission from Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M: The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction: II. Tibial site. *Am J Sports Med* 2003;31:182-188. Panel B reproduced with permission from Kousa P, Järvinen TL, Vihavainen M, Konnus P, Järvinen M: The fixation strength of six hamstring tendon fixation devices in anterior cruciate ligament reconstruction: II. Tibial site. *Am J Sports Med* 2003;31:182-188.

## Surgical Technique

- Open vs Endoscopic
- Reproduce ACL Anatomy
  - Full ROM
  - Stability
  - No Impingement
- Tunnel Position
- Graft tensioning
  - 5-8 lbs pull
  - Cycle ~ 10 times
- Trans Tibial, Anterio Medial, 2 incision, Double Bundle, Multiple variations



# Complications – ACL Recon

- DVT (<1%)
- Hardware failure
- Instability (~10%)
- Nerve and vascular injury (<1%)
- Reflex sympathetic dystrophy (<1%)
- Quad weakness and patellar irriability
- Arthrofibrosis (10-30%)
  - Flexion contractures
- Graft donor site morbidity



### Thanks